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Ex 13.1 (Equivalent statements of Brouwer’s fixed point theorem∗)
Let B1 := B1(0) ⊂ Rn be the closed unit ball. Show that the following claims are equivalent :

1) Every continuous map f : B1 → B1 has a fixed point.
2) There exists no continuous map R : B1 → ∂B1 such that R(x) = x for all x ∈ ∂B1.
3) Every continuous function v : B1 → Rn such that ⟨v(x), x⟩ ≤ 0 for all x ∈ ∂B1 has a

zero in B1(0).
Hint: The implication 2) =⇒ 1) has been proven in the course. Prove 1) =⇒ 3) and 3) =⇒ 2).

Ex 13.2 [Not examinable] (An alternative extension construction)
Let K ⊂ Rn be a nonempty, compact and convex set and f : K → K be continuous. In the
lecture we constructed a continuous extension f̃ : Rn → K. In this exercise we review a different
construction, proposed by a student to Matthias Ruf during the break of the online lectures in
2021.

a) Show that for x ∈ Rn there exists a unique point k(x) ∈ K such that |x − k(x)| =
infk∈K |x− k|.
Hint: For the uniqueness, use that you can equivalently minimize the function |x − k|2 with

respect to k ∈ K and that this function is strictly convex.

b) Show that the map k : Rn → K, x 7→ k(x) is continuous.
Hint: Consider xj → x. Show that any converging subsequence of k(xj) converges to a mini-

mizer of k 7→ |x− k|, using the minimality of k(xj).

c) Show that the map f̃(x) = f(k(x)) for x ∈ Rn defines a continuous extension of f to Rn

such that f̃(Rn) ⊂ K. Can you replace compactness of K by a weaker assumption ?

Solution 13.2 : a) To prove existence it suffices to note thatK is closed. Indeed, any minimizing
sequence will be bounded and since its distance to x is bounded. By continuity of the function
k 7→ |x− k|, any limit of a minimizing sequence will be a minimizer since it belongs to K. To
show uniqueness, assume that k1, k2 ∈ K are different minimizers of K ∋ k 7→ |x − k|. Then
they also minimize K ∋ k 7→ |x− k|2. By strict convexity of this map we deduce that

|x− 1
2
k1 +

1
2
k2|2 < 1

2
|x− k1|2 + 1

2
|x− k2|2,

which contradicts the minimality since by convexity of K we have that 1
2
k1+

1
2
k2 ∈ K. Finally,

observe that k(x) = x for x ∈ K.
Remark: One can show that on Euclidean spaces, the only sets with a unique closed point projection

are closed, convex sets. In Hilbert spaces this problem seems to be still open.

b) Let xj ∈ Rn be such xj → x. Note that |k(xj)| ≤ |k(xj) − xj| + |xj| ≤ |k(x) − xj| + |xj| ≤
|k(x)| + 2|xj|. Hence k(xj) is a bounded sequence 1 and up to a subsequence we can assume

1. Assuming compactness of K, this is trivial. But we will show that the proof only requires closedness.



that k(xj) → k∞ ∈ K, where we used that K is closed. We claim that k∞ = k(x). Since this
result is independent of the subsequence, this proves that k is continuous in x. Note that for
all k0 ∈ K we have

|x− k∞| = lim
j→+∞

|xj − k(xj)| = lim
j→+∞

inf
k∈K

|xj − k| ≤ lim
j→+∞

|xj − k0| = |x− k0|.

Hence by definition k∞ = k(x).

c) As noted in a), it holds that k(x) = x for x ∈ K. Hence f̃ is an extension of f . Moreover,

by the continuity of x 7→ k(x), it follows that f̃ is continuous and by construction we have

f̃(Rn) ⊂ K. Note that we only used the fact that K is convex and closed. Compactness can
therefore be weakened.

Ex 13.3 (Counterexample to Brouwer’s fixed point theorem in infinite dimensions)
Let ℓ2 be the Banach space of square-summable, real-valued sequences, i.e., x = (xi)i∈N ∈ ℓ2

if and only if xi ∈ R and ∥x∥22 :=
∑

i≥1 x
2
i < +∞. Set D = {x ∈ ℓ2 : ∥x∥2 ≤ 1} and define

f : D → ℓ2 by

f(x) = (
√

1− ∥x∥22, x1, x2, x3, . . .).

Show that f(D) ⊂ D, f is continuous, but has no fixed point.

Solution 13.3 : First note that f(x) ∈ ℓ2 since the square-root is real-valued for x ∈ D and
moreover

∥f(x)∥2 = 1− ∥x∥22 +
∑
i≥1

x2
i = 1− ∥x∥22 + ∥x∥22 = 1.

In particular, f(D) ⊂ D. Moreover, for x, y ∈ D it holds that

∥f(x)−f(y)∥22 =
√

1− ∥x∥22−
√

1− ∥y∥2+
∑
i≥1

|xi−yi|2 =
√
1− ∥x∥22−

√
1− ∥y∥2+∥x−y∥22.

Using that the square-root and the norm are continuous, it follows that f is continuous on D.
Finally, we prove that f has no fixed point. If f(x) = x, then by iteration

xn = f(x)n = xn−1 = . . . = f(x)1 =
√

1− ∥x∥22.

Hence, as a sequence, x is constant. Since we assume it is square-summable, we obtain that
x = 0. But then

√
1− ∥x∥22 = 0, which yields a contradiction.

Ex 13.4 (Properties of the subdifferential)
Let E : H → R+∪{∞} be a convex and lower semicontinuous functional on a real Hilbert space
H. We view its (possibly empty, possibly multivalued) subdifferential as a map ∂−E : H → 2H .
Here 2H denotes the power set of H.

a) Show ∂−E is a monotone operator. That is, for every x, y ∈ H, every x∗ ∈ ∂−E(x), and
every y∗ ∈ ∂−E(y),

⟨y∗ − x∗, y − x⟩ ≥ 0.

b) Show the following strong-weak closedness property of the graph of ∂−E. Assume (xn)n∈N
is a sequence in H which converges to x ∈ H. Moreover, let (x∗

n)n∈N be a sequence of
elements x∗

n ∈ ∂−E(xn) weakly converging to x∗ ∈ H. Then x∗ ∈ ∂−E(x).



Solution 13.4 : a) Note x, y ∈ D(E) by assumption. Using the defining properties of the
inclusions x∗ ∈ ∂−E(x) and y∗ ∈ ∂−E(y),

⟨x∗, y − x⟩ ≤ E(y)− E(x),

⟨y∗, x− y⟩ ≤ E(x)− E(y).

Summing these two inequalities yields

⟨x∗ − y∗, y − x⟩ = ⟨x∗, y − x⟩+ ⟨y∗, x− y⟩ ≤ 0.

b) Recall that on every Hilbert space, the scalar product of a strongly convergent against a
weakly convergent sequence converges to the scalar product of the respective limits. Combining
this statement with the lower semicontinuity of E and the inclusion x∗

n ∈ ∂−E(xn) yields for
every y ∈ H that

E(x) + ⟨x∗, y − x⟩ ≤ lim inf
n→∞

E(xn) + lim
n→∞

⟨x∗
n, y − xn⟩ ≤ E(y).

By taking y ∈ D(E), combined with nonnegativity of E this shows x ∈ D(E). In turn, we
obtain x∗ ∈ ∂−E(x).


